Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311092

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Assuntos
Hepcidinas , Lampreias , Animais , Lampreias/genética , Lampreias/metabolismo , Hepcidinas/genética , Sequência de Aminoácidos , Cisteína , Proteínas de Peixes/química , Vertebrados/metabolismo , Peptídeos/genética , Antibacterianos/farmacologia , Filogenia
3.
Dev Biol ; 504: 12-24, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696353

RESUMO

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Assuntos
Cordados , Embrião de Galinha , Animais , Cordados/genética , Evolução Molecular , Vertebrados , Sequência Conservada , Lampreias/genética , Lampreias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Filogenia
4.
Mar Drugs ; 21(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504920

RESUMO

Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides were identified from 1224 precursor proteins using peptidomics and screened for bioactivity in the buccal glands of the lamprey, Lethenteron camtschaticum. We synthesized four candidate bioactive peptides (VSLNLPYSVVRGEQFVVQA, DIPVPEVPILE, VVQLPPVVLGTFG, and VPPPPLVLPPASVK), calculated their secondary structures, and validated their bioactivity. The results showed that the peptide VSLNLPYSVVRGEQFVVQA possessed anti-inflammatory activity, which significantly increased the expression of anti-inflammatory factors and decreased the expression of inflammatory factors in THP-1 cells. The peptide VVQLPPVVLGTFG showed antibacterial activity against some gram-positive bacteria. The peptide VSLNLPYSVVRGEQFVQA possessed good ACE inhibitory activity at low concentrations, but no dose-related correlation was observed. Our study revealed that the buccal glands of the jawless vertebrate lamprey are a source of multiple bioactive peptides, which will provide new insights into the blood-sucking mechanism of lamprey.


Assuntos
Lampreias , Vertebrados , Animais , Lampreias/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Filogenia
5.
Fish Shellfish Immunol ; 140: 108967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488041

RESUMO

The tryptophan-kynurenine (TRP-KYN) pathway is involved in several biological functions, including immunosuppression, inflammatory response, and tumor suppression. Six TRP-KYN pathway-related genes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 2 (IDO2), aminoadipate aminotransferase (AADAT), glutamate oxaloacetate transaminase 2 (GOT2), kynurenine monooxygenase (KMO), and kynureninase (KYNU) have been identified and cloned from the jawless vertebrate lamprey (Lampetra japonica) to gain insights into their evolution and characterization. Expression distribution showed that the key gene Lj-TDO was highly expressed in the oral gland. Real-time quantitative PCR showed that TRP-KYN pathway-related genes were significantly overexpressed after multi-stimulation. RNA interference showed that Lj-IDO2 knockdown regulated the expression of inflammatory factors. In conclusion, our study successfully clarified the ancestral features and functions of the TRP-KYN pathway, while providing valuable insights into the involvement of this pathway in the immune responses of a jawless vertebrate.


Assuntos
Cinurenina , Triptofano , Animais , Triptofano/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Lampreias/genética , Lampreias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Imunidade Inata/genética
6.
Zoolog Sci ; 40(3): 208-218, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37256568

RESUMO

Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.


Assuntos
Lampreias , Fígado , Animais , Feminino , Masculino , Ácidos e Sais Biliares/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lampreias/genética , Lampreias/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell Mol Biol Lett ; 27(1): 102, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418956

RESUMO

The innate immune system is the body's first line of defense against pathogens and involves antibody and complement system-mediated antigen removal. Immune-response-related complement molecules have been identified in lamprey, and the occurrence of innate immune response via the mannose-binding lectin-associated serine proteases of the lectin cascade has been reported. We have previously shown that lamprey (Lampetra japonica) serum can efficiently and specifically eliminate foreign pathogens. Therefore, we aimed to understand the immune mechanism of lamprey serum in this study. We identified and purified a novel spherical lectin (LSSL) from lamprey serum. LSSL had two structural calcium ions coordinated with conserved amino acids, as determined through cryogenic electron microscopy. LSSL showed high binding capacity with microbial and mammalian glycans and demonstrated agglutination activity against bacteria. Phylogenetic analysis revealed that LSSL was transferred from phage transposons to the lamprey genome via horizontal gene transfer. Furthermore, LSSL was associated with mannose-binding lectin-associated serine protease 1 and promoted the deposition of the C3 fragment on the surface of target cells upon binding. These results led us to conclude that LSSL initiates and regulates agglutination, resulting in exogenous pathogen and tumor cell eradication. Our observations will give a greater understanding of the origin and evolution of the complement system in higher vertebrates and lead to the identification of novel immune molecules and pathways for defense against pathogens and tumor cells.


Assuntos
Lampreias , Lectinas , Animais , Lampreias/metabolismo , Lectinas/metabolismo , Filogenia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(48): e2204341119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417444

RESUMO

Optical control of G protein-coupled receptor (GPCR) signaling is a highly valuable approach for comprehensive understanding of GPCR-based physiologies and controlling them precisely. However, optogenetics for GPCR signaling is still developing and requires effective and versatile tools with performance evaluation from their molecular properties. Here, we systematically investigated performance of two bistable opsins that activate Gi/Go-type G protein (mosquito Opn3 (MosOpn3) and lamprey parapinopsin (LamPP)) in optical control in vivo using Caenorhabditis elegans. Transgenic worms expressing MosOpn3, which binds 13-cis retinal to form photopigments, in nociceptor neurons showed light-induced avoidance responses in the presence of all-trans retinal, a retinal isomer ubiquitously present in every tissue, like microbial rhodopsins and unlike canonical vertebrate opsins. Remarkably, transgenic worms expressing MosOpn3 were ~7,000 times more sensitive to light than transgenic worms expressing ChR2 in this light-induced behavior, demonstrating the advantage of MosOpn3 as a light switch. LamPP is a UV-sensitive bistable opsin having complete photoregenerative ability by green light. Accordingly, transgenic worms expressing LamPP in cholinergic motor neurons stopped moving upon violet light illumination and restored coordinate movement upon green light illumination, demonstrating color-dependent control of behavior using LamPP. Furthermore, we applied molecular engineering to produce MosOpn3-based tools enabling light-dependent upregulation of cAMP or Ca2+ levels and LamPP-based tool enabling clamping cAMP levels color dependently and context independently, extending their usability. These findings define the capacity of two bistable opsins with similar retinal requirement as ChR2, providing numerous strategies for optical control of various GPCR-based physiologies as well as GPCR signaling itself.


Assuntos
Culicidae , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Lampreias/metabolismo , Culicidae/metabolismo , Visão Ocular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais Geneticamente Modificados
9.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430927

RESUMO

Human B cell adaptor for phosphoinositide 3-kinase (BCAP) is identified as an adaptor protein expressed in B cells and plays a critical immunomodulatory role in B cell receptor signaling and humoral immune response. In the current study, a homolog of BCAP (Lja-BCAP) was identified in Lampetra japonica. The open reading frame of Lja-BCAP contains 2181bp nucleotides and encodes a protein of 726 amino acids. After being stimulated by mixed bacteria, the mRNA and protein expression levels of Lja-BCAP and the activation levels of tyrosine kinases increased significantly in peripheral blood lymphocytes, gills and supraneural myeloid bodies, respectively. However, after the knockdown of Lja-BCAP by RNAi in vivo, the activation of tyrosine kinases was inhibited in the above tissues, which indicated that Lja-BCAP participated in the anti-bacterial immune response of lampreys. After lipopolysaccharide (LPS) stimulation, the expression of Lja-BCAP in peripheral blood lymphocytes, gills and supraneural myeloid bodies were significantly up-regulated 2.5, 2.2, and 11.1 times (p < 0.05) compared to the control group, respectively; while after phytohemagglutinin (PHA) stimulation, the up-regulation of Lja-BCAP was only detected in peripheral blood lymphocytes. The above results show that Lja-BCAP mainly participates in the LPS-mediated immune response of lampreys.


Assuntos
Lampreias , Fosfatidilinositol 3-Quinases , Animais , Humanos , Lampreias/genética , Lampreias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Imunidade , Tirosina/metabolismo
10.
Fish Shellfish Immunol ; 131: 274-282, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228880

RESUMO

Bone morphogenic protein/retinoic acid inducible neural-specific proteins (BRINPs) and astrotactins (ASTNs) are two members of membrane attack complex/perforin-like (MACPF) superfamily proteins that present high expression in the growing and mature vertebrate neurons. Lamprey has a unique evolutionary status as a representative of the oldest jawless vertebrates, making it an ideal animal model for understanding vertebrate evolution. The evolutionary origins of BRINPs and ASTNs genes in vertebrates, however, have not been shown in lampreys. Here, BRINP and ASTN genes were found in lamprey genomes and the evolutionary relationships of them were investigated by phylogenetic analysis. Protein domains, motifs, genetic structure, and crystal structure analysis revealed that the features of BRINP and ASTN appear to be conserved in vertebrates. Genomic synteny analysis indicated that lamprey BRINP and ASTN neighbor genes differed dramatically from jawed vertebrate. Real-time quantitative results illustrated that the BRINP and ASTN genes family might take part in immune defence and spinal cord injury repair. This study not only enriches a better understanding of the evolution of the BRINP and ASTN genes but also offers a foundation for exploring their roles in the development of the vertebrate central nervous system (CNS).


Assuntos
Lampreias , Traumatismos da Medula Espinal , Animais , Lampreias/genética , Lampreias/metabolismo , Filogenia , Evolução Molecular , Vertebrados/genética , Vertebrados/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/veterinária
11.
Nature ; 610(7933): 699-703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261526

RESUMO

Gas exchange and ion regulation at gills have key roles in the evolution of vertebrates1-4. Gills are hypothesized to have first acquired these important homeostatic functions from the skin in stem vertebrates, facilitating the evolution of larger, more-active modes of life2,3,5. However, this hypothesis lacks functional support in relevant taxa. Here we characterize the function of gills and skin in a vertebrate (lamprey ammocoete; Entosphenus tridentatus), a cephalochordate (amphioxus; Branchiostoma floridae) and a hemichordate (acorn worm; Saccoglossus kowalevskii) with the presumed burrowing, filter-feeding traits of vertebrate ancestors6-9. We provide functional support for a vertebrate origin of gas exchange at the gills with increasing body size and activity, as direct measurements in vivo reveal that gills are the dominant site of gas exchange only in ammocoetes, and only with increasing body size or challenges to oxygen supply and demand. Conversely, gills of all three taxa are implicated in ion regulation. Ammocoete gills are responsible for all ion flux at all body sizes, whereas molecular markers for ion regulation are higher in the gills than in the skin of amphioxus and acorn worms. This suggests that ion regulation at gills has an earlier origin than gas exchange that is unrelated to vertebrate size and activity-perhaps at the very inception of pharyngeal pores in stem deuterostomes.


Assuntos
Brânquias , Íons , Oxigênio , Filogenia , Vertebrados , Animais , Brânquias/metabolismo , Anfioxos/metabolismo , Oxigênio/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Íons/metabolismo , Tamanho Corporal , Lampreias/metabolismo , Pele/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166493, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853560

RESUMO

The clinical management of bladder cancer (BCa) is hindered by the lack of reliable biomarkers. We aimed to investigate the potential of lamprey immunity protein (LIP), a lectin that specifically binds to multi-antennary sialylated N-glycolylneuraminic acid (Neu5Gc) structures on UMOD glycoproteins in the urine of BCa patients. Primary BCa patients had higher levels of LIP-bound Neu5Gc in urine than healthy participants and patients receiving postoperative treatment did. In addition, lectin chip assay and mass spectrometry were used to analyze the glycan chain structure, which can recognize the UMOD glycoprotein decorated with multi-antennary sialylated Neu5Gc structures. Furthermore, compared with urine samples from healthy patients (N = 2821, T/C = 0.12 ± 0.09) or benign patients (N = 360, T/C = 0.11 ± 0.08), the range of the urine T/C ratio detected using LIP test paper was 1.97 ± 0.32 in patients with bladder cancer (N = 518) with significant difference (P < 0.0001). Our results indicate that LIP may be a tool for early BCa identification, diagnosis, and monitoring. Neu5Gc-modified UMOD glycoproteins in urine and Neu5Gc-modified N-glycochains and sialyltransferases may function as potential markers in clinical trials.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Glicoproteínas , Humanos , Lampreias/metabolismo , Lectinas/metabolismo , Polissacarídeos/química , Sialiltransferases , Neoplasias da Bexiga Urinária/diagnóstico , Uromodulina
13.
BMC Genomics ; 23(1): 420, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659564

RESUMO

BACKGROUND: The group XIV of C-type lectin domain-containing proteins (CTLDcps) is one of the seventeen groups of CTLDcps discovered in mammals and composed by four members: CD93, Clec14A, CD248 and Thrombomodulin, which have shown to be important players in cancer and vascular biology. Although these proteins belong to the same family, their phylogenetic relationship has never been dissected. To resolve their evolution and characterize their protein domain composition we investigated CTLDcp genes in gnathostomes and cyclostomes and, by means of phylogenetic approaches as well as synteny analyses, we inferred an evolutionary scheme that attempts to unravel their evolution in modern vertebrates. RESULTS: Here, we evidenced the paralogy of the group XIV of CTLDcps in gnathostomes and discovered that a gene loss of CD248 and Clec14A occurred in different vertebrate groups, with CD248 being lost due to chromosome disruption in birds, while Clec14A loss in monotremes and marsupials did not involve chromosome rearrangements. Moreover, employing genome annotations of different lampreys as well as one hagfish species, we investigated the origin and evolution of modern group XIV of CTLDcps. Furthermore, we carefully retrieved and annotated gnathostome CTLDcp domains, pointed out important differences in domain composition between gnathostome classes, and assessed codon substitution rate of each domain by analyzing nonsynonymous (Ka) over synonymous (Ks) substitutions using one representative species per gnathostome order. CONCLUSIONS: CTLDcps appeared with the advent of early vertebrates after a whole genome duplication followed by a sporadic tandem duplication. These duplication events gave rise to three CTLDcps in the ancestral vertebrate that underwent further duplications caused by the independent polyploidizations that characterized the evolution of cyclostomes and gnathostomes. Importantly, our analyses of CTLDcps in gnathostomes revealed critical inter-class differences in both extracellular and intracellular domains, which might help the interpretation of experimental results and the understanding of differences between animal models.


Assuntos
Feiticeiras (Peixe) , Lectinas Tipo C , Animais , Evolução Molecular , Feiticeiras (Peixe)/genética , Feiticeiras (Peixe)/metabolismo , Lampreias/genética , Lampreias/metabolismo , Lectinas Tipo C/genética , Mamíferos/metabolismo , Filogenia , Domínios Proteicos , Vertebrados/genética
14.
Front Immunol ; 13: 822616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359986

RESUMO

The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.


Assuntos
Citidina Desaminase , Lampreias , Animais , Citidina , Citidina Desaminase/genética , DNA/metabolismo , Lampreias/genética , Lampreias/metabolismo , Vertebrados/metabolismo
15.
Fish Shellfish Immunol ; 124: 454-461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35452833

RESUMO

The TIR domain-containing adaptor inducing IFN-ß (TRIF) is an adaptor molecule that plays a critical role in the Toll-like receptors (TLRs)-mediated innate immune signaling pathway. Lamprey, as the most primitive jawless vertebrate, rely mainly on innate immunity to defend against various pathogens infection. The function of TRIF in lamprey remains unknown. In this study, a homologous adaptor molecule TRIF, named LmTRIF, was identified in Northeast Chinese lamprey (Lethenteron morii). The LmTRIF coding sequence (cds) is 1242 bp in length and encodes 413 amino acids (aa). Domain analysis showed that LmTRIF is characterized with the classical TIR domain and a lack of TRAF6 binding motif. The results of evolutionary tree indicated that the relationship between LmTRIF and other homologous proteins was consistent with the position of lamprey in the species evolutionary history. The relative expression of LmTRIF was highest in the liver of larvae and in the gill of adults, respectively. Cellular immunofluorescence assays showed that LmTRIF was expressed in the cytoplasma in both mammalian cell line HEK 293T and the fish cell line EPC. The double luciferase reporter gene assay showed that the overexpression of LmTRIF promoted the activity of NF-κB, an immune transcription factor downstream of the classical TLR signaling pathway. In this study, we identified the TLR adaptor molecule TRIF from L. morii, a vertebrate more primitive than fish. Our results suggested an important role of LmTRIF in the innate immune signal transduction process of L. morii and is the basis for the origin and evolution of the TLR signaling pathway in the innate immune system in vertebrates.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Lampreias , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , China , Lampreias/genética , Lampreias/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo
16.
J Med Chem ; 65(7): 5821-5829, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35302785

RESUMO

1α,25-dihydroxyvitamin D3 (1,25D3) regulates many physiological processes in vertebrates by binding to the vitamin D receptor (VDR). Phylogenetic analysis indicates that jawless fishes are the most basal vertebrates exhibiting a VDR gene. To elucidate the mechanism driving VDR activation during evolution, we determined the crystal structure of the VDR ligand-binding domain (LBD) complex from the basal vertebratePetromyzon marinus, sea lamprey (lVDR). Comparison of three-dimensional crystal structures of the lVDR-1,25D3 complex with higher vertebrate VDR-1,25D3 structures suggests that 1,25D3 binds to lVDR similarly to human VDR, but with unique features for lVDR around linker regions between H11 and H12 and between H9 and H10. These structural differences may contribute to the marked species differences in transcriptional responses. Furthermore, residue co-evolution analysis of VDR across vertebrates identifies amino acid positions in H9 and the large insertion domain VDR LBD specific as correlated.


Assuntos
Lampreias , Receptores de Calcitriol , Animais , Lampreias/metabolismo , Ligantes , Filogenia , Ligação Proteica , Receptores de Calcitriol/metabolismo , Vitamina D
17.
Artigo em Inglês | MEDLINE | ID: mdl-34728403

RESUMO

The study was designed to identify the types of mitogen-activated protein kinases (MAPKs) in erythrocytes and liver tissues of river lamprey Lampetra fluviatilis and monitor the changes in protein expression levels of found enzymes on the course of prespawning starvation (from November to the end of May). Immunoreactivity of the native and phosphorylated forms of ERK1/2, JNK and p38 was examined in the cytosolic and membrane cell fractions. Both lamprey erythrocytes and liver were found to highly express ERK1/2 and JNK, whereas only trace amounts of p38 were revealed in hepatic tissues. ERK1/2 was identified in cytosolic and membrane fractions, whereas JNK and p38 were predominantly cytosolic enzymes. Total cellular amounts of ERK1/2 and phospho-ERK1/2 in both erythrocytes and liver tissues appeared to be relatively stable on the course of prespawning starvation. However, before spawning ERK1/2 translocated from cytosol to membranes, with partial decline of its cytoplasmic expression being compensated by increases in membrane-bound pool. Immunoreactivity of cytoplasmic JNK, phospho-JNK and p38 were stable from November to March, but sharply decreased before spawning exhibiting almost negligible levels in May, which suggests the depletion of their cellular fractions. Most probably, ERK1/2 plays more important role in mediating adaptive responses of erythrocytes and liver tissues to conditions of natural starvation and maintenance of cell viability before spawning and death of animals in May.


Assuntos
Proteínas de Peixes/metabolismo , Lampreias/metabolismo , Fígado/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Eritrócitos/enzimologia , Feminino , Proteínas de Peixes/sangue , Lampreias/sangue , Masculino , Proteínas Quinases Ativadas por Mitógeno/sangue , Reprodução , Estações do Ano , Inanição/sangue , Inanição/enzimologia , Frações Subcelulares/enzimologia
18.
BMC Biol ; 19(1): 188, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34526036

RESUMO

BACKGROUND: Pineal-related organs in cyclostomes, teleosts, amphibians, and reptiles exhibit color opponency, generating antagonistic neural responses to different wavelengths of light and thereby sensory information about its "color". Our previous studies suggested that in zebrafish and iguana pineal-related organs, a single photoreceptor cell expressing both UV-sensitive parapinopsin and green-sensitive parietopsin generates color opponency in a "one-cell system." However, it remains unknown to what degree these opsins and the single cell-based mechanism in the pineal color opponency are conserved throughout non-mammalian vertebrates. RESULTS: We found that in the lamprey pineal organ, the two opsins are conserved but that, in contrast to the situation in other vertebrate pineal-related organs, they are expressed in separate photoreceptor cells. Intracellular electrophysiological recordings demonstrated that the parietopsin-expressing photoreceptor cells with Go-type G protein evoke a depolarizing response to visible light. Additionally, spectroscopic analyses revealed that parietopsin with 11-cis 3-dehydroretinal has an absorption maximum at ~570 nm, which is in approximate agreement with the wavelength (~560 nm) that produces the maximum rate of neural firing in pineal ganglion cells exposed to visible light. The vesicular glutamate transporter is localized at both the parietopsin- and parapinopsin-expressing photoreceptor terminals, suggesting that both types of photoreceptor cells use glutamate as a transmitter. Retrograde tracing of the pineal ganglion cells revealed that the terminal of the parietopsin-expressing cells is located close enough to form a neural connection with the ganglion cells, which is similar to our previous observation for the parapinopsin-expressing photoreceptor cells and the ganglion cells. In sum, our observations point to a "two-cell system" in which parietopsin and parapinopsin, expressed separately in two different types of photoreceptor cells,  contribute to the generation of color opponency in the pineal ganglion cells. CONCLUSION: Our results indicate that the jawless vertebrate, lamprey, employs a system for color opponency that differes from that described previously in jawed vertebrates. From a physiological viewpoint, we propose an evolutionary insight, the emergence of pineal "one-cell system" from the ancestral "multiple (two)-cell system," showing the opposite evolutionary direction to that of the ocular color opponency.


Assuntos
Glândula Pineal , Animais , Lampreias/genética , Lampreias/metabolismo , Opsinas/metabolismo , Glândula Pineal/metabolismo , Rios , Peixe-Zebra/metabolismo
19.
Zoolog Sci ; 38(4): 326-331, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342953

RESUMO

The adult lamprey retina has two types of photoreceptor cells, short and long photoreceptor cells, which are equivalent to rods and cones of other vertebrates. In contrast, the retina of lamprey larvae only contains a single type of photoreceptor cell, which appears to correspond to the short photoreceptor cell. However, the developmental pattern of the long photoreceptor cell is unknown. Previously, we reported that antibodies against rhodopsin and iodopsin (the chicken red cone opsin) could discriminate between the outer segments of short and long photoreceptor cells, respectively, in the retina of adult Japanese river lamprey (Lethenteron camtschaticum). Here, we immunohistochemically investigate the appearance of long photoreceptor cells in the larval and adult retinas of the Far Eastern brook lamprey (Lethenteron reissneri), which is a close relative of the Japanese river lamprey, by using anti-iodopsin antibody. We found that iodopsin immunoreactivity was localized not only in the adult retina but also in the larval retina. Moreover, we examined the immunohistochemical localization of signal transduction molecules, such as transducin and arrestin, in the iodopsin-immunoreactive cells of the larval retina. The iodopsin-immunoreactive cells also contained both transducin and arrestin, suggesting that long photoreceptor cells are already functional in the larval stage before the acquisition of visual function. Our results suggest that the iodopsin-immunoreactive cells may be related to not only cone vision in the adult but also photoreception in the larval lamprey.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Lampreias/metabolismo , Células Fotorreceptoras/fisiologia , Animais , Lampreias/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo
20.
Dev Biol ; 479: 61-76, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310923

RESUMO

Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.


Assuntos
Lampreias/genética , Tubo Neural/embriologia , Rombencéfalo/embriologia , Animais , Sítios de Ligação , Padronização Corporal/genética , Sequência Conservada , Elementos Facilitadores Genéticos , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Lampreias/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Crista Neural/metabolismo , Tubo Neural/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...